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The Effects of Finite Population Size and Selection
on the Correlation between Gene Frequency Changes at
two Different Loci and on the Amount of Linkage Disequilibrium
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Department of Applied Statistics, University of Reading, Reading, Berkshire (England)

Summary. A potentially infinite random-mating population of monoecious diploid individuals is subjected to a
single cycle of sampling and selection based on the values of a quantitative character. In the absence of epistatic
interactions, expressions are obtained for the correlation between the gene frequencies at two linked loci and for the
mean and variance of linkage disequilibrium after one cycle of selection. Numerical results are presented for a range
of population sizes and for various values of the genetic parameters.

1. Introduction

This paper is concerned with the effects of a single
cycle of selection based on the value of a quantitative
character and applied to a finite population of mon-
oecious diploid individuals. An infinite population,
arising from the potentially infinite gametic output
of the parents, is sampled to provide N individuals.
These individuals are ranked according to the value
of the character and the top # individuals are
selected to become the parents of the next generation.

Hill (1969) has given formulae for the probability
distribution of the genotypic constitution of the
population after selection, when the value of the
character for each genotype hasa generaldistribution.
Kojima (1961) has given approximate expressions for
the mean and variance of the change in gene fre-
quency at a single locus, following selection. He
assumed that there were two alleles at the locus in
question, and that the value of the character for
the " genotype (i =1, 2, 3) was distributed nor-
mally with mean u, and variance ¢%, the same
variance for all three genotypes. Let the prob-
ability of an individual from the infinite population
being of the #* genotype be a;, (i =1, 2,3). Then

2
if d;=py; — 2 a.p,, is the deviation of the mean
=1

=
of the i genotype from the mean of the infinite

d,
*, are the

c
same as those of Hill for the same model. Here &
is the selection intensity defined by Kojima and is
the expected value of the best # values in a sample
of size N taken from a normal distribution with zero
mean and unit variance. Without loss of generality
we shall assume that ¢% = 1, and then make the
assumption that k& d; is sufficiently small that terms
of order (% 4,)? and higher can be neglected.

. .. k
population, Kojima’s results, to order

Kojima (1961) showed that if #; is the number of
individuals selected belonging to the i** genotype,

3
( D n = n>, then to order % d,,
i=1

En)=mna, (1 +kd),

var (n;) =na; (1 —a) +nka, (1 — 2a,)d,
and (1)
cov (n;, nj) = —~na;a;, —nka;a(d, 4 dy) .

If g is the initial frequency of the allele 4,, and ¢’
is the frequency after sampling and selection, then
the results above imply that

Elg)=q+k (“1 dy + ; “2d2)’

and
, 1 — 2
var (¢') =q(';;"'@—4—77+
k 1 ka,d
o (adt Jad)o —2g R,

where ¢ = 1, 2, and 3§ refer to the 4,4,, 4,4, and
4,4, genotypes respectively.

We shall extend Kojima’s results to two loci so that
the correlation between the changes in gene frequency
at different loci and the expected amount of Jinkage
disequilibrium generated and its variance can be
evaluated. The degree of correlation and the amount
of disequilibrium generated can be important in evo-
lutionary terms and also in plant and animal breeding
programmes because they affect the variance of the
change in the mean value of the character as the
population undergoes sampling and selection. The
variance of the change in mean value is important
in designing breeding and selection programmes and
in interpreting selection experiments. The depend-
ence of the derived quantities on the initial gene
frequencies, the initial linkage disequilibrium, the
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selection intensity, the population size, the recombi-
nation factor, and the genetic effects at the two loci
will be described. We shall assume random mating
and no epistatic interactions. The random mating
is complete in that selfing is allowed to occur.

2. The Theory for two Loci

Let the alleles at one locus be 4; and 4, and at
the other B, and B,. Let the gametic frequencies in
the parental population be as follows: —

A, B, A, B, A, B, 4, B,
P2 P3 P4
where P, 4 Py + Py + P, = 1.

The initial linkage disequilibrium is D = P, P, —
— P, P;. Write the gene frequencies of 4, and B,
as X = P, 4+ Pyand Y = P; 4 P,respectively, and
the recombination fraction as ». Table 1 shows the
ten genotypes, separating the two double hetero-
zygotes into the coupling and repulsion phases, and
provides a notation for the associated frequencies,
the numbers selected and the deviations of the geno-
typic means from the population mean.

Using primes to indicate frequencies after sampl-
ing and selection,

2nPy=2N,+ N, + N, + (1 —7) Ny+rN,

20 P, =2N;+Ny-+- N, +# N+ (1 —7) Ng, 5

20 Py =2 Ng+ No+ N, +7Ny+(1 —n) N, [ P

2# Py=2Nyy+Nyg+N,+ (1 —7) Ny+ 7Ny,
and

2n X' =2n (P +Pé) =2 (N, + N, + Ny)

+ (Ny + Ny + No + Ny,
2nY =2n(P;+ P3) =2 (N,+ N, + Ny
+ (N + Ny + No + Ny)
With this notation we require formulae for the co-
variance of X’ and Y’ and for the expected value and
variance of D’ = P, P, — P, P;.

The set of equations (1) apply to the figures in

Table 1 as an obvious extension of their validity for

Gamete

Frequency P,

Genotype Initial Number

frequencies selected
a

a; Ny
A,4,B,By P? N,
A4,A,B,B, 2 PP, N,
4,4,B,B, P} Ny
A,4,B, B, 2 PP N,
A,B,/4,B, 2 PP, N5}
A,B,[A,B, 2 PP, N
A,A4,B,B, 2 PP, N,
Ay,A,B, B, P3 Ny
A,A,B,B, 2 PP, N,
AyA,B,B, P3 A

Total = n

Total = 1
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the one locus case. The variance-covariance matrix
of the ten element random vector (N}, N,, ..., Ny
1s therefore

nd=mnla;), 1,7=1,2,...,10,

where
w. = [0+ kaa;(d; + )],
! a;(t —~a) +ka, (1 —2a,)d;
Unlabelled summations will always be over the ten
genotypes. Letting X7 denote the transpose of a

matrix X, the covariance of any two linear forms in
the N’s is given by

Cov(Xo;N;y ZB;N) =n(xg, ..., 0

XA By, By - -+, Pro)T =7 (Aoxs, Ay x, .
1 +kdy —a, (1 +2kd) —ay[1+k(d+dy)]
—ay [N+ k(d 4 dy)] 1+kdy—a,(1+2kdy) ...

P

P=7.

.y BigByg) X

I_ﬁlo_

L . T
= n(ay 0y, Ay, ..., d1g%) B (By Por - - Pro)¥

+ n(ay &y, a0, - -, A1g010) C (a1 By, a3fs, - - o fio) T

where B = (b;) and C = (c;), 4,7 =1,2,...10,
with
bij = . .
0 147,
and
o= — 1 "‘k(di“—dj)]-
Thus

Cov (Xa; Ny XB; Ny =nXae; B +nkao;f;d;
~nZaoXaifi—knZaon; L apid
—anaiﬂQ-Zaiocidi. (3)

Substituting d; = g; — p, where g; is the mean of the
7** genotype and p = 2’ 4; g;, is the population mean

o; and f; required for
covariance calculation

Deviétion of genotypic

di=gi —p o Bi
0, + 0, — u 1 1
b+ @y — 1 1/2
6, — 0, — p 1 0
D, + 0, —pu 1/2 1
D+ D, — 1/2 1/2
1/2 1/2
D, — 0, — p 1/2 0
—0, + 9, — n 0 1
—0,+ D, — u 0 1/2
-0, — 0, —n 0 0
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in (3) gives

Cov (Zo; Nj, 2B Ny) =m (X a; &, i — X a; ¢ 2 a; ;]
+Ehknlaofig — Zan;2a; g
—Zaif; X a gl
—knpl2la;0; X a; B — Xa,x i

Table 1 also gives the values of «; and f;, which,
together with the a; and g;, are needed for calculating
cov (X', Y'), the covariance of the changes in gene
frequencies at the two loci. The initial population
is assumed to have been formed by random mating
and there are assumed to be no epistatic effects.
The additive effects of two loci on the character are
written §;, and 6, and the dominance effects are
written @, and @,.

After considerable algebra,
Table 1 leads to

substitution from

. on D kD

cov (X,X ):5—71‘—1—*517{61(1“2)()
+0,(1—2Y)+ &1 —6X(1 —X)]
+ @1 -6Y (1 —Y)l}. (4)

Kojima (1961) has already given, in one locus form,
the formulae for the variances but they can be more
easily obtained here by substituting &, = f§;, (¢ = 1,
2,...,10) to give

Var (x) =X U= 8 L B g X (1 X) (1 —2x)
+6,D(1 —2X)
LOX(1—X) [t —6X(1 —X)]
+ @, [D(1 —2X)(1 —2Y) — 2D}
and
Var (v)y =020 4 F e D —2)

+6,Y1—-Y)(1—2Y)
+ D D(1—-2X)1 —2Y)—2D7
+ DY (1 —Y)
XM —6Y(1—Y)}. (5)
Formulae (4) and (5) can be used to obtain
p = correlation coefficient of X* and Y"

Cov (X', V")

T VVar (X) Var ()
Clearly p is independent of # and, for obvious reasons,
of ». Ignoring terms of order (& d4;)?

48 [ -

D(1—2Y) 1 D —2X)
?WTj] + k0, [5 ~Voxa —"'X)]

R Rt B U R
D1 —2X)(1 —2Y) 1
T2y -v) *] +k 452_[’2‘ —3Y(1-Y)
bz D(1—2X)(1 —2Y)
TXOM-X) T 2X(0-X%x ]} (6)
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The variances and covariance of the changes in
gene frequencies at the two loci are the expected
values of only three of all the possible quadratic
forms in the genotypic numbers N,, N,, ..., Ny
The linkage disequilibrium D’ = P; P, — P, P} is
another. The covariances of P; and P, and of P,
and P; can be evaluated by the methods used above
and hence the expected values of P; P, and P, P;
derived to give

E(D) =

1D -2+ k(S 4 B, —w)

+%D(L—%ﬁ1+k@d1~2Xﬁ

+EP (1 —2Y) —kyp], (7)

where y is the population mean before sampling and
selection, viz.

p=0,2X —1) 0,2V —1)
+@2X(1 —X)+D,2Y (1 -7).
The effect of selection on E(D’) is again evident in

the addition of terms with a factor %4 to the value of
E(D’) due to sampling alone which is

E(D") :D(1 o _L).

Hill and Robertson (1966 and 1968) and Karlin
and McGregor (1968) have both given the sampling
expectation of D’ as

, 1
E(D)=D(t —7 (1 _27).

The difference between our formula and theirs is due
to a difference in the underlying models which have
been termed “‘random union of zygotes’” and “‘random
union of gametes’” respectively. Ohta (1968) and
Watterson (1970) have both discussed the difference.
Briefly, the model which we have used, random
union of zygotes, takes into account the formation
of individuals from the gametic output of the parents,
and is more correct biologically. The second model
only considers sampling from one gametic pool to
form another in the next generation and does not
allow selection to operate on the actual individuals
formed between the two gametic productions.

3. The Dependence of g on the Genetic Parameters.

The limits of D for given values of the gene fre
quencies X and Y correspond to the situations when
at least one gamete is missing from the population.
Thus D is maximum, D = P, P, when

P,=X{(1—-Y)—D=0 or
Pi=Y(1—-—X)—D=0o0,
and D is minimum, D = — P, P, when
P=XY4+D=0 or

P=1-X)1—-Y)+D=0.
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| The correlation between X’ and Y’, the gene fre-
| CULERR A | £ REn|LSZSSS S quencies of A, and B, respectively in the generation
Sa@dmmmm | Cmhimann | 2338888 after sampling and selection, can become quite large
|PPO00C00|FC00000 | O-~-<ww~ Inamount (positive or negative in sign) if D is near
| : one of its limits, i.e. when one of the gametic fre-
'i 53322@33 §%§§ §§§ TgoNaee ! quencies in the parent generation is near to zero.
125533535 |368c0c8|ag58523  Complete positive correlation is achieved when both
| | P, and P; are zero and D = P; P,. The correlation
l - . 1 :
cocccooco coocoomo cococoo. 1slarge1fD>—2~P1P4. Complete negative corre-
l ‘38&?:&'565‘8%2@3%3 ;‘,‘3}23‘;@‘ lation occurs when both P, and P, are zero and
CUIITNTLY QAAAAAN | Q= : o 1
" ‘???????j?olol?clmfol ?oooooo D:—P2Pa,]glagambecommglfD(——7P1P3.
N 1 ! N R
e ‘ i Hence correlations can be expected to approach
T[2/82288881SR822I8 Sm8LRRS 1 if either both coupling or both repulsion gametes
§ - ||%828828 |IRIRnnR|8RRIANNS + e coupling or both repulsion gametes
o |ll] Secerecw' 3383330 |38 358s | have very small frequencies in the parent generation,
popxa b b EEE R E b b P 1] and quite large values of Jo| can be expected if any
) ] ‘ one gametic frequency is close to zero.
= | ARNRGER | wE88888  dRORB DM \ The formulae derived in this paper all assume that
‘= NN T NQO O QO QO | =~ NN
s SUCSESS Q222022 S8R5 S LSS the k6 and & @ terms are small so that terms of
Q : order (k0)2 and (k @) can be neglected. Latter
3 o on D w tetn | 1h 0 G g | mounrang | (1905) discusses this approximation. It would appear
S CREEIRR | I23525T 18835559 that our results are probably reasonably accurate for
= SOCOdSS | SSSS3So |[dcdcdS3| kO andk @ less than about 0.4. In Table 2 we quote
: results for 20, =0 and 0.25. To our order of
2 cldococorcoicotcocooo|lcomcoooo flpproxinqation all functions arellinear in. k6 a_nd S0
=0 PR intermediate results can be obtained by linear inter-
LAl Lol . .
é g%\ LIRS ‘;§‘ §°§§§ \:g: g§ polation. Table 2 gives the values of p calculate(}
S 3836083 |65 503 |6ec8sa8s | from formulae (4) and (5) for a range of values of X
§ terdbrb b bbby bbb it and Y and for a range of values of D, from its
T lallmeonono 200000 |Mnna0mo minimum to its maximum value. The genetic models
S-S R8R583 | 4388838 |58 n%R | considered and the abbreviations used in Table 2 are
X6 c8S8S[Sevnces[S5333S3 foll
A UTTTTTTT 7777777977777 asfollows. . ,
N 1. —/-: no selection, (or, equivalently, genes of no
= effect); k0, =k D, =0,1=1,2.
XVOPOQOD | MINNO = == | —
§ £888888 |S535 9a5 gﬁggﬁ?ﬁ 2. aj-: addltlve/no effect; 0,= @, = @, =0
2, Semervrew [03cc3S33S | 6833388| 3. df-: dommant/noeffect, =0, 0,=0,=0
RSN 4. ala: additive/additive; 0, =10, @D, =P, =0
g TSUEgRe 82808 Rs | ssangss| 5 d/a: dominant/additive; 0, =0, = @, P, =0
E SRRIenn | QARaea N gn oz 6. d/d: dominant/dominant; 0; = (Di, =1, 2
QO Q QOO COQ0O0CQOO COoQOoOoOo0
. | The covariance of X and Y is clearly zero if X or Y
S i is 0 or 1. The values of p in this table are given in
4 ' ©coco0000c0o o000 0oo | 00c0ooo | the order above. It is evident that for the dif-
= oo o ferent genetic models there is little change in the
- ~~ [ — . . .
| SSRRZEs 82 §§g§§ §\§E§8$0§ size of 9, and hence that its value depends mainly on
| || 835838 c | 8833883 |dc88saa | theamount of sampling and selection and not on the
oprrr e rrp e r bbb genetic model. Except when the initial frequencies
} at one or both loci are small, the effect of selection
T § §§§§§§ ‘é‘ §§§§§§ 2 § § § § § § is to decrease the amount of correlation below the
||l CCoaeas|S522888|5222222 | value due to sampling alone.
S T T T T O O B I Although, as mentioned above, different genetic
\ models have little effect on the value of ¢ we shall
now consider the different genetic models in more
Ly L |y . . . )
‘. ~llsss| Sllsss) —!!lssw| detail. We shall call the sampling correlation g,, i.e.
‘ QITSIRT|RIZIIESIR|Q I 3R D .
! < a « R S A Y - Y)]1/2'The signs ofggandg are
| I I | ‘ both determined by the sign of D. From equation (6),
‘ = | - ! = the relative change in g, due to selection can, to the
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first order of k 8,, be considered as arising from

1. an additive effect & 0, H X - %%1;_2“3]

and
2. a dominance effect & @, [; —-3X(1—-X)

D2 D(1~gX)(1—2Y)]

YOG -Y) 2Y(t-—-Y)

with similar effects due to the second locus.
The additive effect consists, at the first locus, of

1) the ‘direct additive effect’, % — X, depending on

the gene frequency at the locus in question

and ii) the ‘cross additive effect’,%%é%—? ,
depending on both D and the gene frequency at the
other locus.

Considering the first locus, the direct additive
effect will be largest when X is small and will cause
the greatest decrease in g, when X is large. The cross
additive effect will cause the greatest increase in g
if X and Y are both large and D is near maximum,
or if X is large, Y is small, and D is near minimum.

Thus the greatest increase in p from the additive
genetic effects at both loci will be when X and Y are
both small, due to the direct additive effects. If D
is then also small, the cross additive effects will also
tend to increase p. The greatest decrease in p due to
the additive genetic effects will occur when X and Y
are both large. At neither locus will the cross additive
effects be large, but if D is near its maximum these
effects will reinforce the depression of g.

The dominance effect at the first locus consists
likewise of

i} a direct dominance effect, % —3X (1 —X),

depending on X alone,
and ii} a cross dominance effect,

—De D(1 —2X)(1 —2Y)

Y —Y) 2Y(1 —Y) ’

depending on X, Y and D. Similar results hold for
the second locus.

The direct effect is greatest when X approaches
or 1 and has a minimum of — i when X = 12 .
The cross effect may become large (and negative) if
the second term is positive in sign. If X and Y are
both small and D is near its minimum the overall
dominance effect due to both loci will be positive and
give the greatest increase in p. The decreasing effects
will be greatest when D is near its maximum and X

and Y are both close to but less than % , or when D
1s near minimum and X and Y are again close to,

but on opposite sides, of % .
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Situations where one locus has a large and the
other a small gene frequency will cause least change
from the value g, when the loci are dominant/additive.
When the gene frequencies are of the same order of
size, this model behaves more as the dominant/
dominant and additive/additive models.

Apart from the situations (i) X =Y =

1
4 bl
Y = i—, D < 0, it can be seen from Table 2 that

Qi) X = Y=+, D<o and (i) X =,

N

selection causes a decrease below |y, in nearly every
situation. Consideration of additive and dominance
effects show that where the change is an increase
above |gy], the additive/additive model causes the
greatest increase, and where the change is a decrease,
the dominant/dominant model is responsible for the
greatest depression.

4- The Effects of Selection on E(I))

When there is no selection, (k = 0), the expected
value of linkage disequilibrium after sampling is

7 = R
E(D) _D(1 y ”).
Clearly sampling will reduce, eventually to zero, the
expected amount of disequilibrium, and this reduc-
tion will be fastest for small populations and when
the loci are not tightly linked.
With selection following sampling, rearrangement
of equation (7) gives, to the first order of % 0,,
EW") 1
7 =(1 ——r—ﬁ)«“ — k0, 2X —1)
—kO,2Y —1) + D1 —2X (1 — X)]
RO 1 —2Y (1 —Y)]}

—(1 ~%){k(b,2X(1 —X)
TREO2Y (1 —Y)). (8

The righthand side of this expression is independent
of D and gives the factor by which D is expected to
change. Values of this factor were calculated for
different fractions, (# = 0, 0.1 and 0.5) and X and Y
taking all values on the set {% , 12 , %} . k0, takes
the values 0 and 0.25. Table 3 shows these values
when # = 4 and # = 32 respectively, these being
well representative of the effect of increasing n. D,
and hence E(D’), will be zero when either X or Y
is zero.

From the tables it is evident that the factor is
increased by increasing the combined selection and
genetic effects, k 0,, by increasing the population
size and by tighter linkage.

The additive effect, & 01(1 — - 5‘7) 1 — 2 X)

at the A-locus, will decrease the factor when X is
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Table 3. Values of E(D")/D. Population sizes n = 4 and 32. k 0, = 0 and 0.25

x = 1/4 ¥ =1/2 x = 3[4

v Model n =4 n = 32 n = n = 32 n = n = 32
0 —/— 0.875 0.984 0.875 0.984 0.875 0.984
al— 0.984 1.107 0.875 0.984 0.766 0.861
aj— 1.051 1.170 0.891 0.986 0.832 0.924
ala 1.094 1.230 0.984 1.107 0.875 0.984
dla 1.160 1.293 1.000 1.109 0.941 1.047
dld 1.227 1.356 1.066 1.172 1.008 1.110
0.1 —/— 0.775 0.884 0.775 0.884 0.775 0.884
af— 0.872 0.995 0.775 0.884 0.678 0.774
y=1/4 aj— 0.923 1.042 0.778 0.874 0.729 0.821
aja 0.969 1.105 0.872 0.995 0.775 0.884
dla 1.020 1.153 0.875 0.984 0.826 0.932
djd 1.070 1.200 0.926 1.032 0.877 0.979
0.5 ] 0.375 0.484 0.375 0.484 0.375 0.484
al— 0.422 0.545 0.375 0.484 0.328 0.424
dj— 0.410 0.530 0.328 0.424 0.316 0.409
ala 0.469 0.605 0.422 0.545 0.375 0.484
dla 0.457 0.590 0.375 0.484 0.363 0.469
dld 0.445 0.575 0.363 0.469 0.352 0.454
0 e 0.875 0.984 0.875 0.984 0.875 0.984
al— 0.984 1.107 0.875 0.984 0.766 0.861
dj— 1.051 1.170 0.891 0.986 0.832 0.924
ala 0.984 1.107 0.875 0.984 0.766 0.861
dla 1.051 1.170 0.891 0.986 0.832 0.924
djd 1.066 1.172 0.906 0.988 0.848 0.926
0.1 —/— 0.775 0.884 0.775 0.884 0.775 0.884
al— 0.872 0.995 0.775 0.884 0.678 0.774
y = 1/2 dj— 0.923 1.042 0.778 0.874 0.729 0.821
aja 0.872 0.995 0.775 0.884 0.678 0.774
dla 0.923 1.042 0.778 0.874 0.729 0.821
ald 0.926 1.032 0.781 0.863 0.732 0.811
0.5 —/— 0.375 0.484 0.375 0.484 0.375 0.484
aj— 0.422 0.545 0.375 0.484 0.328 0.424
dj— 0.410 0.528 0.328 0.424 0.316 0.409
ala 0.422 0.545 0.375 0.484 0.328 0.424
dla 0.410 0.528 0.328 0.424 0.316 0.409
djd 0.363 0.469 0.281 0.363 0.270 0.348
0 —/— 0.875 0.984 0.875 0.984 0.875 0.984
al— 0.984 1.107 0.875 0.984 0.766 0.861
d/— 1.051 1.170 0.891 0.986 0.832 0.924
aja 0.875 0.984 0.766 0.861 0.656 0.738
dja 0.941 1.047 0.781 0.863 0.723 0.801
djd 1.008 1.110 0.848 0.926 0.789 0.864
0.1 — /- 0.775 0.834 0.775 0.884 0.775 0.384
al— 0.872 0.995 0.775 0.884 0.678 0.774
y = 3/4 dj— 0.923 1.042 0.778 0.874 0.729 0.821
ala 0.775 0.884 0.678 0.774 0.581 0.663
dja 0.826 0.932 0.631 0.763 0.632 0.711
djd 0.877 0.979 0.732 0.811 0.683 0.758
0.5 -~/ 0.375 0.484 0.375 0.484 0.375 0.484
al— 0.422 0.545 0.375 0.484 0.328 0.424
dj— 0.410 0.530 0.328 0.424 0.316 0.409
ala 0.375 0.484 0.328 0.424 0.281 0.363
dja 0.363 0.469 0.231 0.363 0.270 0.348
djd 0.352 0.454 0.270 0.348 0.258 0.333

large, i.e. near 1, and increase it when X is small, ( 1 ) X (1 — X} at the A-locus. has a
having no effect when X = 1/2. The dominance t=5)2 ( ) s,

effect, & @, {(1 — 7 — 5171—) (1—-2X{1 — X)) minimum when X = ,;W , the effect increasing as X

d
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decreases to 0 or increases to 1. The dominance
effect increases the factor, but the greatest increase
occurs when X is large or small.

Comparing the factor E(D’}/D) with that when
k =0, (~/~ model), higher gene frequencies with
selection cause a greater reduction and lower gene
frequencies cause less reduction. When there is
selection, and X and Y are small, linkage is tight
and the population size is sufficiently large, E(D’)
can be greater than D in size. This cannot happen
without selection.

5. The Variance of Linkage Disequilibrium, var (D’)

Knowing E(I)), the variance of D’ can be derived
if an expression for E(D'%) can be obtained. This
quantity,

E(D?) = E (P} Py + (Py PY)* — 2 P, P} P, P},
involves the fourth order moments of IV, ..., Ny

Watterson (1970) obtained an expression for £(D’2)
when there is sampling only, by means of the moment
generating function of the distribution of (Py, P, P;5,
Py, given (P,, P,, P,, P,) in the parent generation.
After some rearrangement, Watterson’s expression
becomes

E(D?) = n(n—1)n—2)@®—3)

(LY
—1)(r—2 .
2= sz
+r(—2S 422 —-16D?%
+72(S+10D2)]+n—~(”—12><
X [48 ~3Z+6D%+7(—108
+ 82 —16D% 4+ 2 (6S -+ 16 D?)]
n
+W(1~21’)2S,
where, following Watterson,Z = X (1 —X) Y (1Y)
and S=P P, + Py, Py=2Z42D*
+D(1—2X){1 —2Y).

To obtain an expression for E(D’?) when selection
follows sampling, the moment generating function of
the distribution of (P;, P,, P;, P,) was obtained, the
differentiation and subsequent algebra proving less
formidable than the manipulation of the fourth
order moments of Ny, ..., Ny, referred to above.

The numbers of the different genotypes selected
are multinomially distributed, the probability asso-
ciated with »; being a; (1 + kd;), 1 =1,...,10,
where @; and d; are given in Table 1. Thus

7! 7y Na e s - 2 71080
NIN T L Nyl
where n; = a; (1 + £ d;). The moment generating

function for (P;, P,, Pj, P,) is

prob [Ny« NyolPy, Py, Py, Py] =

g 15P;
Mt ty, b3, 8y) = E | e™=" (P, Py, Py, Py
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The P;,1 = 1.,..4,aregivenintermsof N;,..., Ny,
in equation (2). Substitution and rearrangement
gives

g Niug

M, 4, 8, ) :E["izi [Py, Py, P, P4]

= (mg e + - -+ + ;) the m.gf. of Ny, ...

where

E] J\’ 10

WUy =10y, 20Uy =1 by, WUy =1y, 20 0y = 1, + 15,
2nug =1t b+ 7+l — 8 — 1),
2nug =1ty -ty —¥({ly+t; — 8 — 1)

2W Uy = by - by, Uy =13, 20Uy =13 -,
Uy = by,

and

Writing ¢, = P; ¢/2#, i = 1 .. 4, and substituting
for the 4;, further rearrangement gives

M(tl"‘t4|P1"'P4)

={l(1 —kp) @1+ &+ ¢+ 9)° — 2 (¢4 ¢+ 92 %)
+ 1 —kl“l‘k(@l‘}‘ @2)]

X [2 (91 94 1 45 G3) cosh —— (b + ¥ — ¥ — 2y)

¥
2n (
+2 (00 — 90 sinh 55 (65— & — )
+ k0, (g + ) — (95 + 9%
+ R0, (¢ + 93)* — (32 + 94)2

T2k D195+ 9290 + 28 Dy (¢ G2 + 73 q4) 5" -

When & = 0, this expression reduces to that given
by Watterson. After differentiation and much mani-
pulation, an expression is obtained for E(D?).

This, together with [E(D’))? obtained by squaring
equation (8) gives the following expression for var D',
ignoring terms of order (% 6,)? and higher.

Var D' = nn2n ) V{1re¥T, (9)
where V = (v;) is a net italic 3 X3 matrix with the
following elements in which

W=D@{1-2X)(1—2Y),
A=DX (1 —X)(1 —-27),
B=DY{1—-Y)1—2X).

o= {2+ W~ D+ (RO, (1 —2X)

+ k81 —2Y)] (2~ W —4 D%
— k0, A—%0,B
L (RO +h D) (Z + W 6D
FRBX(—X) +hBY (1 — T)]
X [24D* — 4Z — 5 W]}, '
V=D —Z — W+ k0, (1 —2X)
+ kO, (1 —2Y)1{4D2 —~Z] + kO, 4
+ k0B L (kD +RDy) (4D —Z —W)
T RO, X(1—X)+ kDY (1 —Y)]
X [Z +3W — 14 D%,
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Fig. 1. The relationship between op’, and » for different
initial D ; no selection model; initial gene frequencies, X = 1/4,
Y =1/4
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Fig. 3. The relationship bLetween op’, and » for different
initial D; no selection model; initial gene frequencies X = 1/2,
Y =1/2
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Fig. 2. The relationship between o7, and » for different
initial D; no selection model; initial gene frequencies, X = 1 /4,
Y = 1/2

vy = 1 (3D —Z —2W +1k0, (1 —2X)
RO (1 —2Y) 10D —Z — 2 W]
+3 (k0,4 + k0, B)
(kB kD) (18D — Z — 2 W)
+ 1P X (1 —X)+-D Y (1 —Y)]
X [6Z +15W — 82 D%},

%2:.;{W—21)2+;_k61(1 ~2X)
+ k0,1 —2Y)] (W — 6 D2
~2(k0,4 + k0, B)

+ R (1 —2XP2 +ED (1 —2Y)

X [W — 6 D]}

vy = — 16 D[RO, (1 —2X) - k0,(1 —2Y)],
vm:%{VV~2I)2+Lk61(1 — 2 X)

4 k0,(4 —2Y)] (W — 6Dz
—2(k0, 4+ k6, B)
+ (B @y + k @) (W — 14 D?)
12, X (1 — X)
+hE®,Y (1 —Y) (6D — W)}

Uge = 0,

»

and

Usg = — Upg.

‘The expression (9) was used to calculate the approx-

imate standard deviation of D’, op, for the same
genetic models as before, with %0, = 0.25.
population sizes used were # = 4 and 32 and the

The
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Fig. 4. The relationship between op’, and ¢ for different
initial D; dominant/dominant model, & 0, = 0.25; initial gene
frequencies X = 3/4, Y = 3/4

recombination {fraction was » = 0, 0.01, 0.1, 0.4 and
0.5. As before, the initial linkage disequilibrium took
5 values throughout the range possible for each pair

of gene frequencies, and these took the values ;7,
1 3. S
> and 4 in all combinations.

Iigures 1 to 3 show the relationship between oy,
and 7 when there is no selection, (Model —/-), for the
population sizes # = 4 and # = 32 and the five dif-
ferent initial values of D. These values could be
obtained from the formulae given by Watterson
(1970). The initial gene frequencies (X, Y) in the

igures LI TR N 0
three figures are <4, 4), (4, 2) and (2, 2)

respectively. The situation for (-i—, 71) if identical

4
LY o 1) (L3
to that for (*4—’“47)’ as those for(2 , 4), (2 4)
and (3— l) are to (i 1). The diagrams for
472 4’ 2

1 3 301 . . 1 1) .
(T’ I) and (2—,2») are identical to (T’T) if D
takes the opposite sign. From Figures 1 to 3 the
effect of sampling can be estimated. In every situ-

ation, except X = Y = % with D near + % , tight
linkage (7 close to 0) gives a greater value of o,,

than » = —;— , although the minimum of o5 does not

When X = Y = &,

1
generally occur at v = > 5

D = 4 %—, the situation is one in which initially

either both repulsion or both coupling gametes are
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Fig. 5. The relationship between op’, and » for different
initial D; dominant/dominant model, £ ; = 0.25; initial gene
frequencies X = 1/2, Y = 3/4
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Fig. 6. The relationship between op’, and » for different
initial D; dominant/dominant model, & 0, = 0.25; initial gene
frequencies, X = 1/2, Y = 1/2

absent from the population. With no selection, in
each case the differences in o due to different values

of D are reduced as 7 approaches % The greatest

changes in o) occur as D approaches its extremes,
exceptionally for the initial frequencies (X, Y)

S ) ()
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= 0 and 0.25

0.1, 0.5and k 0,

o initially. Population sizes n = 4 and 32, vecombination fractions v

Table 4. Values of op’ when D

dla

|~

al—

1/2  3/4 1/4 1/2 3[4

34 1/4 /2 34 14 12 34 14 12 34 14

1/2

L0674 .0568 .0645 .0690 .0582
L0693 .0733 .0615 .0690 .0730 .0612

.0568 .0594 .0496 .0582 .0612 .0513

.0631

.0597

0553
.0479

.0677
.0737
.0597

L0677
.0553

.0618

0533
.0615
0533

L0635
.0733
.0635

.0600
.0693
.0600

.0517
0597
0517

.0638

.0638
0737

.0536

0677
L0586

0553
.0638
.0638 .0553

0638
0737

0553
.0638
0553

1/4
1/2
3/4

0.1

.0469 .0397

.0443 .0469 .0400 .0442 .0461 .0393
.0461
.0400 .0406 .0344 .0393 .0397 .0337

.0490 .0506 .0431

.0406
0438
.0352

.0497
L0541
.04338

.0454
0497
.0406

.0373
0431
.0373

.0438
-0506
.0438

.0425
.0490
.0425

.0380

.0438
.0380

.0469

.0541
.0469

.0431
.0497
0431

.0406
L0469
0406

.0469

L0541
.0469

.0406
0469
.0406

1/4
1/2
3/4
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|
3
|

.0239 .0255 .0215 .0243 .0259 .0219
.0262 .0277 .0233 .0259 .0273 .0229
.0215 .0224 .0187 .0219 .0229 .0192

.0210
.0227
0182

.0257
.0280
.0227

.0235
.0259

.0210

.0201
.0233
.0201

.0240

.0277
.0240

.0227
.0262
.0227

.0197

.0227
.0197

0243
.0280
.0243

.0223
0257
.0223

.0210
.0243
.0210

.0280
0243

.0243

0210
.0243
.0210

1/4
0.1 1/2
3/4

32

.0197 .0203 .0173 .0185 .0188 .0160
.0161 .0163 .0138 .0158 .0160 .0135

0180 .0188 .0161 .0178 .0185 .0158

0163
.0176
0141

.0200

.0217
.0176

.0182
.0200
.0163

.0150
L0173
.0150

0176
.0203
.0176

0171
.0197
L0171

.0153
.0176
.0153

.0188

.0217
0.188

0173

.0200
0173

.0188 0.163
.0217 0.188
.0188 .0163

.0163
.0188
L0163

1/4
1/2
3/4

0.5
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be seen in Figure 1, when 7 == 0 and |D| is near 1i6 ,

and when 7 = %and [D] is near —-. The greatest

change in ¢ occurs when X = Y = k, for 7 close

to 0, where ¢y rapidly increases as |D] — 0. The
situations represented in Figure 2 show that ¢y, is
not greatly affected by changes in D when the gene
frequencies are of unequal but intermediate sizes.
Figures 4 to 6 show the relationships of figures 1
to 3 for the dominant/dominant model with % 0,
_ init s (3,3), (1.3
= 0.25 and initial frequencies <4 , 4), (2 ’ 4)
and (% ) —;) respectively. Curves for the selection

models were very similar to the ones for the no
selection situation. Figures 4 to 6 are representative
of the most marked differences between the selection
and no selection models.

Table 4 gives the value of op for the different mo-
dels when D = 0 initially, with 26; = 0.25, » = 4
and 32, » = 0.1 and 0.5. The table gives some idea
of the response of oy to changes in the initial gene
frequency at the two loci.

The greatest variation in the value of ¢y is due
to the size of the population selected. As # increases,
o decreases, and the range of values taken by o)
for different D correspondingly decreases. The
initial values of X, Y and D contribute more to
differences in ¢ than the underlying genetic model
or the effect of selection. Thus, as before, sampling
is of greater importance than selection.

6. Discussion

All the formulae and results given in this paper
refer to a single cycle of sampling and selection. The
use of results from a single cycle in understanding the
consequences of evolutionary pressures is clearly
limited. We hope to find ways of extending our
studies, so that repeated cycles of sampling and
selection can be studied. On the evolutionary time
scale, other problems would then arise because of the
probable variations from generation to generation of
the population size, the selection intensity, and the
genetic effects. The selection of a fixed number of
individuals to be the parents of the next generation,
rather than the selection of individuals with prob-
abilities depending only on their own genetic values,
may also be more relevant in plant and animal breed-
ing programmes than in natural selection.

We are hoping to find ways of extending the re-
sults obtained, so that a small number of cycles of
selection can be studied. These results would be of
considerable importance in artificial selection pro-
grammes. In particular we plan to study the way
in which the variance of the mean performance of
a small population develops under sampling and
selection, A previous discussion of the between
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population variance in mean performance (Baker and
Curnow, 1969) ignored the correlations between gene
frequency changes at different loci.

The results obtained in this paper do suggest that
with a small number of cycles of sampling and
selection, the effects of sampling can often dominate
those of selection. Clearly the balance between the
effects of sampling and the effects of selection depend
on the population size, the selection intensity, and
the size of the genetic effects. What we have shown
in this paper is that if the genetic effects are of the
size generally associated with quantitative charac-
ters, i.e. d;/o < 0.2, and the selection not too intense
(i.e. & < 2), then sampling often has a larger effect
than selection on the development of linkage dis-
equilibrium and of correlations between gene fre-
quencies at different loci.
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